2025年成考高起点每日一练《数学(理)》3月21日专为备考2025年数学(理)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。
单选题
1、等差数列{an}中,已知前15项之和S15=90,则a1+a15=()。
- A:8
- B:10
- C:12
- D:14
答 案:C
解 析:等差数列{an}中,S15=[(a1+a15)*15]/2=90,得(a1+a15)/2=6,a1+a15=12,答案为C。
2、函数的值域是()。
- A:(0,+∞)
- B:(-∞,+∞)
- C:(1,+∞)
- D:[1,+∞)
答 案:C
解 析:
3、给出下列两个命题:①如果一条直线与一个平面垂直,则该直线与该平面内的任意一条直线垂直②以二面角的棱上任意一点为端点,在二面角的两个面内分别作射线,则这两条射线所成的角为该二面角的平面角.则()
- A:①②都为真命题
- B:①为真命题,②为假命题
- C:①为假命题,②为真命题
- D:①②都为假命题
答 案:B
解 析:一条直线与平面垂直,则直线与平面内的任意一条直线垂直,故①为真命题;二面角的两条射线必须垂直于二面角的棱,故②为假命题,因此选B选项.
4、中心在坐标原点,对称轴为坐标轴,且一个顶点(3,0),虚轴长为8的双曲线方程是()
- A:
- B:
- C:
- D:
答 案:B
解 析:双曲线有一个顶点为(3,0),因此所求双曲线的实轴在x轴上,可排除A、C选项,又由于虚轴长为8,故b=4,即b2=16,故双曲线方程为
主观题
1、在正四棱柱ABCD-A'B'C'D'中,
(Ⅰ)写出向量
和
关于基底{a,b,c}的分解式;
(Ⅱ)求证:
(Ⅲ)求证:
答 案:(Ⅰ)由题意知(如图所示)
2、求(1+tan10°)(1+tan35°)的值。
答 案:原式=1+tan10°+tan35°+tan10°·tan35°
3、记△ABC的内角A,B,C的对边分别为a,b,c,已知B=60°,b2=ac,求A。
答 案:由余弦定理b2=a2+c2-2accosB,可得ac=a2+c2-ac,即a2+c2-2ac=(a-c)2=0,解得a=c。 又因为B=60°,故△ABC为等边三角形,所以A=60°
4、已知等差数列{an}中,a1+a2+a3=6,a2+a4+a5= 12求{an}的首项与公差。
答 案:因为{an}为等差数列,
填空题
1、在△ABC中,已知a=+
,则bcosC+ccosB=______。
答 案:
解 析:由余弦定理得,
2、与已知直线 7x+24y-5 =0 平行,且距离等于3的直线方程是______。
答 案:7x+24y+70=0或7z+24y-80-0
解 析:
精彩评论