五虎职教网:包含各种考证等职教知识

网站首页

您的位置:首页 学历类成考高起点 → 2025年03月25日成考高起点每日一练《数学(文史)》

2025年03月25日成考高起点每日一练《数学(文史)》

2025/03/25 作者:匿名 来源:本站整理

2025年成考高起点每日一练《数学(文史)》3月25日专为备考2025年数学(文史)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。

单选题

1、函数f(x)=sinx+x3()。

  • A:是偶函数
  • B:是奇函数
  • C:既是奇函数,又是偶函数
  • D:既不是奇函数,又不是偶函数

答 案:B

2、cos+cos(-)+cot+sin+tan=()。

  • A:2
  • B:1
  • C:-2
  • D:-1

答 案:D

3、一批产品共有5件,其中4件为正品,1件为次品,从中一次取出2件均为正品的概率为()。

  • A:0.6
  • B:0.5
  • C:0.4
  • D:0.3

答 案:A

解 析:本题主要考查的知识点为随机事件的概率。 一次取出2件均为正品的概率为

4、由数字1、2、3、4组成没有重复数字的两位数共有()。

  • A:6个
  • B:12个
  • C:8个
  • D:10个

答 案:B

主观题

1、已知F是椭圆的右焦点,点M在抛物线y2=2px(p>0)上O为坐标原点,且△MOF为正三角形.  (Ⅰ)求P的值; (Ⅱ)求抛物线的焦点坐标和准线方程.

答 案:(Ⅰ)由椭圆方程可知,椭圆的长半轴a=5,短半轴,则椭圆的半焦距 即椭圆的右焦点F的坐标为 (4.0). 如图,因为△MOF为正三角形,OF=4,过M作MN⊥OF于N点, 【考点指要】本题主要考查椭圆、抛物线的概念,要求考生掌握它们的标准方程和性质,会用它们解决有关的问题.  

2、(1)已知tanα= 求cot2α的值; (2)已知tan2α=1,求tanα的值。

答 案:(1) (2)由已知,得 解关于tanα的一元二次方程,得tanα=

3、设全集U=R,集合A={x|-5<x<5},B={x|0≤x≤7},求CUA∩B.

答 案:解:全集U=R,A={x|-5<x<5},B={X|0≤x≤7},因为CuA={x|x≤-5或x≥5},所以CuA∩B={x|x≤-5或x≥5}N{x|0≤x≤7}={x|5≤x≤7},如图1—10所示。

4、弹簧的身长与下面所挂砝码的重量成正比,知弹簧挂20g重的砝码时长度是12cm,挂35g重的砝码时长度是15cm,写出弹簧长度y(cm)与砝码重x(g)的函数关系式,并求弹簧不挂砝码时的长度  

答 案:设弹簧原长为y0cm,则弹簧伸长量为(y-y0)cm。 由题意得 y-y0 =kx,即 y= kx+y0, 所求函数关系式为y=0.2x+8,弹簧的原长为8CM

填空题

1、已知点P(-3,1)为角α终边上一点,则cos(2α-π)的值等于______。  

答 案:

解 析:因为cos(2α-π)=cos(π-2α)=-cos2α。由已知, 所以

2、与已知直线7x+24y-5=0平行,且距离等于3的直线方程是______。  

答 案:7x+24y+70=0或7x+24y-80=0

解 析:设要求的直线方程为7x+24y+c=0, ∵直线7x+24y+c=0到直线7x+24y-5=0的距离等于3 ∴ ∴.C=70或-80. 故所求的直线方程为7x+24y+70=0或7x+24y-80=0

网友评论

0
发表评论

您的评论需要经过审核才能显示

精彩评论

最新评论

相关文章