2025年成考高起点每日一练《数学(文史)》3月28日专为备考2025年数学(文史)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。
单选题
1、已知sinαcosα则cosα-sinα的值为()
- A:
- B:
- C:
- D:
答 案:A
解 析:
【考点指要】本题考查用三角函数的恒等变换进行计算,此类题是成人高考的重点.
2、已知sinα=,且540°<α<630°,则sin2α=()。
- A:
- B:
- C:
- D:
答 案:B
解 析:由已知,360°+180°<α<360°+270°,所以α是第三象限的角,故
3、下列函数中,为增函数的是()。
- A:
- B:
- C:
- D:
答 案:A
解 析:本题主要考查的知识点为函数的单调性。 对于y=x3,y′=3x2≥0,故y=x3为增函数。
4、下列函数中,为奇函数的是()
- A:y=cos2x
- B:y=sinx
- C:y=2-x
- D:y=x+1
答 案:B
解 析:当f(-x)=-f(x)时,函数f(x)是奇函数,四个选项中只有选项B符合,故选B选项.
主观题
1、已知等差数列{an}中,a1+a3+a5=6,a2+a4+a6=12,求{an}的首项与公差.
答 案:因为{an}为等差数列,则
2、设函数
(I)求f'(2);
(II)求f(x)在区间[一1,2]的最大值与最小值.
答 案:(I)因为,所以f'(2)=3×22-4=8.(II)因为x<-1,f(-1)=3.
f(2)=0.
所以f(x)在区间[一1,2]的最大值为3,最小值为
3、求证:双曲线的一个焦点到一条渐近线的距离等于虚半轴的长.
答 案:设双曲线的方程为 则它的焦点坐标为F1(-c,0),F2(c,0),其中c2=a2+b2,渐近线方程为
令设焦点F2(c,0)到渐近线
的距离为d,则
即从双曲线
的一个焦点F2(c,0)到一条渐近线
的距离等于虚半
轴的长b,由上述推导过程可知,点F2到渐近线
以及点F1(-c,0)到渐近线
的距离都等。
由于证明中只涉及a,b,c,而与双曲线的位置无关,所以这个结论对于任意双曲线都成立.
解 析:本题考查的是圆锥曲线与直线位置关系的推理能力,主要是用代数的方法表示几何中的问题.考生必须对曲线方程、几何性质及元素之间的关系有深刻的理解,方可解决此类综合题.这种综合性的圆锥曲线试题出现的概率比较高,要引起重视.
4、弹簧的身长与下面所挂砝码的重量成正比,知弹簧挂20g重的砝码时长度是12cm,挂35g重的砝码时长度是15cm,写出弹簧长度y(cm)与砝码重x(g)的函数关系式,并求弹簧不挂砝码时的长度
答 案:设弹簧原长为y0cm,则弹簧伸长量为(y-y0)cm。 由题意得 y-y0 =kx,即 y= kx+y0,
所求函数关系式为y=0.2x+8,弹簧的原长为8CM
填空题
1、不等式的解集是()
答 案:
解 析:或
或
2、在△ABC中,AB=1,______。
答 案:
精彩评论