2025年成考高起点每日一练《数学(理)》4月9日专为备考2025年数学(理)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。
单选题
1、与1775°的终边相同的绝对值最小的角是()。
- A:335°
- B:-25°
- C:25°
- D:155°
答 案:B
解 析:1775°=5×360°+(-25°),故所求角为-25°。
2、设F1,F2分别是椭圆的焦点,并且B1是该椭圆短轴的一个端点,则△F1F2B1,的面积等于()。
- A:
- B:
- C:
- D:2
答 案:B
解 析:
3、函数的定义域为()。
- A:{x|x>1}
- B:{x|x≤2}
- C:{x|1
- D:{x|1
- D:{x|1
答 案:D
4、已知x+x-1=2cos40°,则x4+x-4=().
- A:2cos20
- B:-2cos20°
- C:2sin80°
- D:-2sin80°
答 案:B
解 析:由已知得(x+x-1)2=(2 cos 40°)2,x2+2+x-2=4cos240°,x2+x-2=2(2 cos240°-1)=2cos 80°同样可得x4+x-4=2 cos 160°=-2 cos 20°
主观题
1、为了测河的宽,在岸边选定两点A和B,望对岸标记物C,测得AB=120m,求河的宽
答 案:如图,
∵∠C=180°-30°-75°=75°
∴△ABC为等腰三角形,则AC=AB=120m
过C做CD⊥AB,则由Rt△ACD可求得CD=
=60m,
即河宽为60m
2、在△ABC中,B=120°,BC=4,△ABC的面积为,求AC.
答 案:由△ABC的面积为得
所以AB =4.因此
所以
3、空间有四个点,如果其中任何三点不在同一直线上,可以确定几个平面?
答 案:根据公理,在所给定的四点中任取三点,可确定一个平面,由组合公式所以共可确定四个平面。
解 析:空间有n个点,如果其中任何三点不在同一直线上,可以确定个平面。
4、设函数f(x)=xlnx+x.(I)求曲线y=f(x)在点((1,f(1))处的切线方程;
(II)求f(x)的极值.
答 案:(I)f(1)=1,f'(x)=2+lnx,故f'(1)=2.所以曲线y=f(x)在点(1,f(1))处的切线方程为y=2x-1.(II)令f'(x)=0,解得当
时,f'(x)
单调递减,在区间
单调递增.因此f(x)在
时取得极小值
填空题
1、
答 案:;150°
解 析:
2、已知,则
=______。
答 案:
解 析:
精彩评论