2025年成考高起点每日一练《数学(理)》4月11日专为备考2025年数学(理)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。
单选题
1、在定义域内下列函数中为增函数的是()。
- A:f(x)=2-x
- B:f(x)=-log2x
- C:f(x)=x3
- D:f(x)=x2+1
答 案:C
解 析:由函数的性质可知,f(x)=x3为增函数。(答案为C)
2、袋中有6个球,其中4个红球,2个白球,从中随机取出2个球,则其中恰有1个红球的概率为()
- A:
- B:
- C:
- D:
答 案:A
解 析:
3、已知a,b为任意正实数,则下列等式中恒成立的是()。
- A:ab=ba
- B:2a+b=2a+2b
- C:
- D:algb=blga
答 案:D
解 析:由于a,b为任意正实数,不妨取a=1,b=2。在A项中,12≠21;B项中,21+2≠21+22;C项中,,而
≠
。故选D。
4、设集合M={x||x-2|<1},N={x|x>2},则M∩N=()
- A:{x|1<x<3}
- B:{x|x>2}
- C:{x|2<x<3}
- D:{x|1<x<2}
答 案:C
解 析:M={x||x-2|<1}解得{x|-1<x-2<1}={x|1<x<3},故M∩N={x|2<x<3}
主观题
1、为了测河的宽,在岸边选定两点A和B,望对岸标记物C,测得AB=120m,求河的宽
答 案:如图,
∵∠C=180°-30°-75°=75°
∴△ABC为等腰三角形,则AC=AB=120m
过C做CD⊥AB,则由Rt△ACD可求得CD=
=60m,
即河宽为60m
2、已知x+x-1=,求x2+x-2的值。
答 案:由已知,得
3、设a为实数,且tanα和tanβ是方程ax2+(2a-3)x+(a-2)=0的两个实根,求tan(α+β)的最小值。
答 案:由已知得
4、设函数f(x)=xlnx+x.(I)求曲线y=f(x)在点((1,f(1))处的切线方程;
(II)求f(x)的极值.
答 案:(I)f(1)=1,f'(x)=2+lnx,故f'(1)=2.所以曲线y=f(x)在点(1,f(1))处的切线方程为y=2x-1.(II)令f'(x)=0,解得当
时,f'(x)
单调递减,在区间
单调递增.因此f(x)在
时取得极小值
填空题
1、在自然数1、2、…、100中任取一个数,该数能被3整除的概率是______。
答 案:0.33
解 析:此题随机试验包含的基本事件总数n=100,且每个数能被取到的机会均等,即属于等可能事件的概率能被3整除的自然数的个数m=33,故所求概率
2、曲线y=在点(1,1)处的切线方程是______。
答 案:2x+y-3=0
解 析:本题主要考查的知识点为切线方程
由题意,该切线斜率,
又过点(1,1),所以切线方程为y-1=-2(x-1)
精彩评论