2025年成考高起点每日一练《数学(理)》4月25日专为备考2025年数学(理)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。
单选题
1、在的展开式中,含x5项的系数是()。
- A:1
- B:-1
- C:252
- D:-252
答 案:D
解 析:
2、函数的定义域是()。
- A:(-∞,0)∪[2,+∞)
- B:[0,2]
- C:(-∞,0)∪(2,+∞)
- D:(0,2)
答 案:C
解 析:x2-2x>0,解得x<0或x>2.函数的定义域为(-∞,0)∪(2,+∞)。答案为C。
3、过直线3x+2y+1=0与2x-3y+5=0的交点,且垂直于直线L:6x-2y+5=0的直线方程是()。
- A:x-3y-2=0
- B:x+3y-2=0
- C:x-3y+2=0
- D:x+3y+2=0
答 案:B
解 析: 即两直线的交点坐标为(-1,1)
又直线L:6x-2y+5=0的斜率为3 ,则所求的直线方程为
即x+3y-2=0.
4、若a>b>0,则()。
- A:log2a
- B:2a<2b
- C:
- D:
答 案:D
解 析:根据指数函数与对数函数的单调性可知,当a>b>0时,有恒成立
主观题
1、已知数列{an}中,a1=2,
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{an}前5项的和 S5
答 案:解:
2、已知一组数据9.9;10.3;9.8;10.1;10.4;10;9.8;9.7,计算这组数据的方差。
答 案:
3、(1)已知tanα=,求cot2α的值; (2)已知tan2α=1,求tanα的值。
答 案:(1)(2)由已知,得
解关于tanα的一元二次方程,得tanα=
4、记△ABC的内角A,B,C的对边分别为a,b,c,已知B=60°,b2=ac,求A。
答 案:由余弦定理b2=a2+c2-2accosB,可得ac=a2+c2-ac,即a2+c2-2ac=(a-c)2=0,解得a=c。 又因为B=60°,故△ABC为等边三角形,所以A=60°
填空题
1、在△ABC中,a=2,b=,∠B=
,则∠A=______。
答 案:
解 析:
2、函数y=x4-2x2+5,x∈[-2,2]上的最小值______,最大值______。
答 案:4;13
解 析:y=x4-2x2+5,y'=4x3-4x
精彩评论