2025年成考高起点每日一练《数学(文史)》5月7日专为备考2025年数学(文史)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。
单选题
1、已知直线l:3x一2y-5=0,圆C:,则C上到l的距离为1的点共有()
- A:1个
- B:2个
- C:3个
- D:4个
答 案:D
解 析:由题可知圆的圆心为(1.-1),半径为2,圆心到直线的距离为,即直线过圆心,因此圆C上到直线的距离为1的点共有4个.
2、如果函数y=kx+b的图像经过A(1,2)和B(0,1),则k=()。
- A:-5
- B:1
- C:2
- D:5
答 案:B
3、()。
- A:
- B:
- C:
- D:
答 案:C
4、若|a|=1,|b|=(a-b)⊥a,则a与b的夹角为( )
- A:30°
- B:45°
- C:60°
- D:75°
答 案:B
解 析:因为(a-b)⊥a,
【考点指要】本题考查向量的模与夹角的计算、向量的数量积的几何意义及对垂直问题的应用
主观题
1、设函数
(I)求f'(2);
(II)求f(x)在区间[一1,2]的最大值与最小值.
答 案:(I)因为,所以f'(2)=3×22-4=8.(II)因为x<-1,f(-1)=3.
f(2)=0.
所以f(x)在区间[一1,2]的最大值为3,最小值为
2、已知a,b,c成等比数列,x是a,b的等差中项,y是b,c的等差中项证明
答 案: 考点 本题考查考生对等差中项和等比中项公式的理解及运用.
3、在△ABC中,已知AB=2,BC=1,CA=
点D,E,F分别在AB,BC,CA边上,△DEF为正三角形,记∠FEC为α,如果sinα=
求△DEF的边长。
答 案:解析:由AB=2,BC=1,CA= 得BC2=CA2=AB2,因此∠C=90°,如图所示。
因为sinA=
所以∠A=30°,于是∠b=60°。
设正△DEF边长为l,已知AB=2,sinα=
由此EC=lcosα
有图知,∠1+∠2+∠3=180°(三角形内角和);
∠3+∠4+α=180°,因为∠2-∠4=60°,所以∠1=α。
【考点指要】本题主要考查三角函数的概念、同角三角函数的关系及正弦定理,这些均是考试大纲要求掌握的重要概念,并要求能达到灵活应用的程度,此类题是在成人高考中出现频率较高的题型,
4、已知等差数列前n项和
(Ⅰ)求通项
的表达式
(Ⅱ)求
的值
答 案:(Ⅰ)当n=1时,由得
也满足上式,故
=1-4n(n≥1)
(Ⅱ)由于数列
是首项为
公差为d=-4的等差数列,所以
是首项为
公差为d=-8,项数为13的等差数列,于是由等差数列前n项和公式得:
填空题
1、已知tanα=2,则=______。
答 案:
2、在△ABC中,AB=1,______。
答 案:
精彩评论