五虎职教网:包含各种考证等职教知识

网站首页

您的位置:首页 学历类成考高起点 → 2025年05月07日成考高起点每日一练《数学(文史)》

2025年05月07日成考高起点每日一练《数学(文史)》

2025/05/07 作者:匿名 来源:本站整理

2025年成考高起点每日一练《数学(文史)》5月7日专为备考2025年数学(文史)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。

单选题

1、已知直线l:3x一2y-5=0,圆C:,则C上到l的距离为1的点共有()

  • A:1个
  • B:2个
  • C:3个
  • D:4个

答 案:D

解 析:由题可知圆的圆心为(1.-1),半径为2,圆心到直线的距离为,即直线过圆心,因此圆C上到直线的距离为1的点共有4个.

2、如果函数y=kx+b的图像经过A(1,2)和B(0,1),则k=()。  

  • A:-5
  • B:1
  • C:2
  • D:5

答 案:B

3、()。

  • A:
  • B:
  • C:
  • D:

答 案:C

4、若|a|=1,|b|=(a-b)⊥a,则a与b的夹角为( )

  • A:30°
  • B:45°
  • C:60°
  • D:75°

答 案:B

解 析:因为(a-b)⊥a, 【考点指要】本题考查向量的模与夹角的计算、向量的数量积的几何意义及对垂直问题的应用

主观题

1、设函数
(I)求f'(2);
(II)求f(x)在区间[一1,2]的最大值与最小值.

答 案:(I)因为,所以f'(2)=3×22-4=8.(II)因为x<-1,f(-1)=3.f(2)=0.
所以f(x)在区间[一1,2]的最大值为3,最小值为

2、已知a,b,c成等比数列,x是a,b的等差中项,y是b,c的等差中项证明  

答 案: 考点 本题考查考生对等差中项和等比中项公式的理解及运用.

3、在△ABC中,已知AB=2,BC=1,CA= 点D,E,F分别在AB,BC,CA边上,△DEF为正三角形,记∠FEC为α,如果sinα= 求△DEF的边长。

答 案:解析:由AB=2,BC=1,CA= 得BC2=CA2=AB2,因此∠C=90°,如图所示。 因为sinA= 所以∠A=30°,于是∠b=60°。 设正△DEF边长为l,已知AB=2,sinα= 由此EC=lcosα 有图知,∠1+∠2+∠3=180°(三角形内角和); ∠3+∠4+α=180°,因为∠2-∠4=60°,所以∠1=α。 【考点指要】本题主要考查三角函数的概念、同角三角函数的关系及正弦定理,这些均是考试大纲要求掌握的重要概念,并要求能达到灵活应用的程度,此类题是在成人高考中出现频率较高的题型,

4、已知等差数列前n项和 (Ⅰ)求通项的表达式 (Ⅱ)求的值  

答 案:(Ⅰ)当n=1时,由 也满足上式,故=1-4n(n≥1) (Ⅱ)由于数列是首项为公差为d=-4的等差数列,所以是首项为公差为d=-8,项数为13的等差数列,于是由等差数列前n项和公式得:  

填空题

1、已知tanα=2,则=______。  

答 案:

2、在△ABC中,AB=1,______。  

答 案:

网友评论

0
发表评论

您的评论需要经过审核才能显示

精彩评论

最新评论

相关文章