五虎职教网:包含各种考证等职教知识

网站首页

您的位置:首页 学历类成考高起点 → 2025年05月22日成考高起点每日一练《数学(文史)》

2025年05月22日成考高起点每日一练《数学(文史)》

2025/05/22 作者:匿名 来源:本站整理

2025年成考高起点每日一练《数学(文史)》5月22日专为备考2025年数学(文史)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。

单选题

1、某车间有甲、乙两台机床,已知甲机床停机的概率为0.06,乙机床停机的概率为0.07,甲、乙两车床同时停机的概率是()。

  • A:0.13
  • B:0.0042
  • C:0.03
  • D:0.04

答 案:B

2、()  

  • A:8
  • B:14
  • C:12
  • D:10

答 案:B

解 析:

3、函数f(x)=当x∈[-2,+∞)时是增函数,当x∈(-∞,-2]时是减函数,则f(1)=()  

  • A:-3
  • B:13
  • C:7
  • D:由m而定的常数

答 案:B

解 析:由题意知抛物线的对称轴为x=-2,  

4、若log155=m,则log153=()。

  • A:
  • B:1+m
  • C:1-m
  • D:m-1

答 案:C

解 析:log153=log15=log1515-log155=1-m选C。

主观题

1、  

答 案:

2、已知等差数列前n项和 (Ⅰ)求通项的表达式 (Ⅱ)求的值  

答 案:(Ⅰ)当n=1时,由 也满足上式,故=1-4n(n≥1) (Ⅱ)由于数列是首项为公差为d=-4的等差数列,所以是首项为公差为d=-8,项数为13的等差数列,于是由等差数列前n项和公式得:  

3、设椭圆的中心是坐标原点,长轴在x轴上,离心率已知点P到圆上的点的最远距离是求椭圆的方程  

答 案:由题意,设椭圆方程为 设P点到椭圆上任一点的距离为 d, 则在y=-b时,最大,即d也最大。  

4、教室里有50人在开会,其中学生35人,家长12人,老师3人,现校长在门外听到有人在发言,那么发言人是老师或学生的概率为多少?  

答 案:此题属于互斥事件,发言人是老师的概率为,是学生的概率为,故所求概率为。

填空题

1、化简sin(x+y)-2cosxsiny=______。  

答 案:sin(x-y)

解 析:原式=sinxcosy+cosxsiny-2cosxsiny=sinxcosy-cosxsiny=sin(x-y)  

2、函数y=2x(x+1)在x=2处的切线方程是__________.  

答 案:10x-y-8=0

解 析:由函数y=2x(x+1) 知,y´=(2x2+2x)'=4x+2,则y´|x=2=10.又当x=2时,y=12,知此函数的切线过点(2,12),且斜率为10。则其切线方程为10(x-2)=y-12,即10x-y-8=0. 【考点指要】本题考查利用导数求曲线的切线方程,y=ƒ(x)在点P(x0,y0)处的导数值即为曲线y=ƒ(x)在该点处切线的斜率.

网友评论

0
发表评论

您的评论需要经过审核才能显示

精彩评论

最新评论

相关文章